首页> 外文OA文献 >Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions
【2h】

Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions

机译:固体和硫酸盐水溶液气溶胶的全球分布:颗粒相变的滞后效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The partitioning between solid and aqueous phases of tropospheric sulfate-ammonium particles is simulated with a global 3-D chemical transport model (CTM). The simulation explicitly accounts for the hysteresis of particle phase transitions by transporting aqueous sulfate and three solid sulfate forms (namely, ammonium sulfate, letovicite, and ammonium bisulfate). Composition-dependent deliquescence relative humidities (DRH) and crystallization relative humidities (CRH) are based on recent laboratory data. We find that the solids mass fraction on a sulfate basis is 0.34, partitioned as 93% ammonium sulfate, 6% letovicite, and 1% ammonium bisulfate. The fraction increases with altitude from 0.10 to 0.30 in the boundary layer to 0.60–0.80 in the upper troposphere. The dominance of solids in the upper troposphere arises in part from high sulfate neutralization, reflecting in our simulation a low retention efficiency of NH3 upon cloud freezing. High sulfate neutralization is consistent with the few available observations in the upper troposphere. High acidity with a dominant aqueous phase, however, can occur following volcanic eruptions. Seasonal variation of the solids mass fraction in both the lower and upper troposphere is modulated by emissions of NH3 from the terrestrial biosphere and biomass burning as well as by emissions of dimethylsulfide from the ocean biosphere. The timescale of phase transitions, as driven by changes in relative humidity, varies from 10 to 50 h in the boundary layer to 150–400 h in the upper troposphere. Omission of the hysteresis effect in the CTM by assuming that particle phase follows the lower side of the hysteresis loop increases the solids mass fraction from 0.34 to 0.56. An upper side assumption decreases the fraction to 0.17. Lower and upper side assumptions better approximate particle phase for high and low altitudes, respectively. Fluctuations in the CRH, which can be induced by other constituents in sulfate particles such as minerals or organic molecules, strongly affect the solids mass fraction in the boundary layer but not at higher altitudes. Further studies are needed to determine the effects of large solids mass fraction on heterogeneous chemistry and cirrus cloud formation.
机译:对流层硫酸盐-铵颗粒的固相和水相之间的分配是通过全局3-D化学传输模型(CTM)进行模拟的。该模拟通过传输硫酸盐水溶液和三种固体硫酸盐形式(即硫酸铵,硫云母和硫酸氢铵)来明确说明颗粒相变的滞后现象。成分相关的潮解相对湿度(DRH)和结晶相对湿度(CRH)基于最新的实验室数据。我们发现,以硫酸盐为基准的固体质量分数为0.34,分配为93%的硫酸铵,6%的三水锂矿和1%的硫酸氢铵。分数随高度从边界层的0.10到0.30升高到对流层上部的0.60-0.80。对流层上部的固体占主导地位部分是由于高硫酸盐中和作用所致,在我们的模拟中反映出在云层冻结时NH3的保留效率较低。硫酸盐的高中和作用与对流层上空的少数可用观测结果一致。然而,火山喷发后可能会发生具有主要水相的高酸度。对流层下部和对流层中固体质量分数的季节性变化受陆地生物圈和生物质燃烧产生的NH3排放以及海洋生物圈排放的二甲基硫的影响。相变的时间尺度由相对湿度的变化驱动,从边界层的10到50 h变化到对流层上部的150-400 h。通过假设颗粒相遵循滞后回线的下侧,可以忽略CTM中的滞后效应,从而将固体质量分数从0.34增加到0.56。上侧假设将分数降低到0.17。较低和较高的假设分别更好地近似了高空和低空的粒子相位。硫酸盐颗粒中的其他成分(例如矿物质或有机分子)可能会导致CRH的波动,这会严重影响边界层中的固体质量分数,但不会影响更高的海拔高度。需要进一步的研究来确定大的固体质量分数对异质化学和卷云形成的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号